药品首页 >
产品预订 > 稀缺预定

Luxturna 失明基因疗法

通用名称失明基因疗法 Voretigene neparvovec
品牌名称Luxturna
产地|公司美国(USA) | Spark Therapeutics(Spark Therapeutics)
技术状态原研产品
成分|含量
包装|存储 室温
微信客服
Xirou_Canada
微信ID
(8:00-15:00)
服务时间
通用中文 失明基因疗法 通用外文 Voretigene neparvovec
品牌中文 品牌外文 Luxturna
其他名称
公司 Spark Therapeutics(Spark Therapeutics) 产地 美国(USA)
含量 包装
剂型给药 储存 室温
适用范围 遗传性失明
通用中文 失明基因疗法
通用外文 Voretigene neparvovec
品牌中文
品牌外文 Luxturna
其他名称
公司 Spark Therapeutics(Spark Therapeutics)
产地 美国(USA)
含量
包装
剂型给药
储存 室温
适用范围 遗传性失明

使用说明书

(免责声明:本说明书仅供参考,不作为治疗的依据,不可取代任何医生、药剂师等专业性的指导。本站不提供治疗建议,药物是否适合您,请专业医生(或药剂师)决定。)
等待内容更新

中文说明

(免责声明:本说明书仅供参考,不作为治疗的依据,不可取代任何医生、药剂师等专业性的指导。本站不提供治疗建议,药物是否适合您,请专业医生(或药剂师)决定。)
中文说明

 

美国食品药品监督管理局(FDA)批准了第一种用于遗传疾病的基因疗法,它能够治疗一种遗传性失明,但目前这种治疗方法的价格或高达100万美元。

2017年12月19日,美国食品药品监督管理局批准了这项名为Luxturna的基因疗法,它由费城生物科技初创公司Spark Therapeutics研发。

美国食品药品监督管理局局长斯科特·戈特利布在一份声明中说:“今天的批准标志着基因疗法领域的又一个‘第一次’,这既是指全新的作用机理,也是指把基因疗法的使用范围扩展至癌症治疗之外,用于治疗视力受损。这个里程碑凸显了这种突破性方法在治疗一系列广泛的挑战性疾病方面的潜力。”

此前获批上市的基因疗法主要用于癌症治疗。

 


Luxturna疗法可以治疗双等位基因RPE65突变相关的遗传性视网膜营养不良(IRD)。这种疾病由一种有缺陷的基因引起,它导致无法产生正常视力所需的蛋白,从而造成视力逐渐下降,乃至失明。在北美,约有6000人罹患这种疾病。

美联社12月19日的报道中介绍,Luxturna通过一种基因改造过的细菌,将健康的基因复制品带入患者的眼中,产生出需要的蛋白,从而恢复视力。

美国食品药品监督管理局专员Scott Gottlieb在声明中称,“这一突破性的方法在治疗更多疑难杂症上充满潜力。”

据英国金融时报12月19日介绍,与传统药品不同,基因疗法能够直接替换导致特定疾病的基因,或者补充缺少的基因,从而让身体自我治愈。由于这种疗法从根源治疗疾病,支持者认为,这种方法能治疗一系列的基因引起的疾病。

此前的2017年8月,美国食品药品监督管理局批准了第一种基因疗法Kymriah,它用于治疗一种白血病。10月,美国食品药品监督管理局批准了第二种基因疗法的治疗方式Yescarta,它用于治疗一种淋巴瘤。

美联社报道评论称,虽然对基因疗法的前景充满乐观,但质疑和担忧一直存在,主要集中在安全性和价格上。Kymriah此前公布的价格是47.5万美元一个疗程。虽然Spark Therapeutics还没有公布Luxturna基因疗法需要收费多少,但分析师预计,治疗两只眼睛的价格将会达到100万美元。

美国卫生政策中心主任Peter Bach博士在接受美联社采访时表示,“(基因疗法的)价格是惊人的,约为一般美国人年收入的20到30倍。对于这种情况,我们需要问自己的问题是,究竟多少社会财富被投资进这些公司才合适。

 

 

 

 

 

 

 

 

 

 

 

外文说明

(免责声明:本说明书仅供参考,不作为治疗的依据,不可取代任何医生、药剂师等专业性的指导。本站不提供治疗建议,药物是否适合您,请专业医生(或药剂师)决定。)
英文说明 Luxturna

Treatment for Biallelic RPE65-Mediated Inherited Retinal Disease

FDA Advisory Committee Unanimously Recommends Approval of Investigational Luxturna (voretigene neparvovec) for Patients with Biallelic RPE65-mediated Inherited Retinal Disease

PHILADELPHIA, Oct. 12, 2017 (GLOBE NEWSWIRE) -- Spark Therapeutics (NASDAQ:ONCE), a fully integrated gene therapy company dedicated to challenging the inevitability of genetic disease, announced today that the U.S. Food and Drug Administration’s (FDA) Cellular, Tissue and Gene Therapies Advisory Committee has unanimously recommended (16-0) approval of Luxturna (voretigene neparvovec), an investigational, potential one-time gene therapy, for the treatment of patients with vision loss due to confirmed biallelic RPE65-mediated inherited retinal disease (IRD).

“Today’s unanimous advisory committee vote recommending the approval of Luxturna moves us closer to bringing this investigational adeno-associated viral (AAV) vector gene therapy to patients with vision loss due to confirmed biallelic RPE65-mediated IRD,” said Katherine A. High, M.D., president and head of Research and Development, Spark Therapeutics. “The clinical program for Luxturna includes patient data that show efficacy for up to four years on endpoints including bilateral multi-luminance mobility test (MLMT) score change and full-field light sensitivity threshold (FST) testing, with observation ongoing. We look forward to continuing to work with FDA as it completes its review of Luxturna.”

The advisory committee’s recommendation is based on Luxturna’s clinical development program, which includes the first completed randomized, controlled Phase 3 gene therapy clinical trial ever conducted for a genetic disease. In the original Phase 3 intervention group, participants aged four to 44 years on average maintained the functional vision and visual function improvements demonstrated 30 days after Luxturna administration through their last annual follow-up visit, as measured by bilateral multi-luminance mobility test (MLMT) score change and full-field light sensitivity threshold (FST) testing. Data from a cohort of the Phase 1 clinical trial, in which investigational Luxturna was administered to the contralateral, or second previously uninjected eye, showed similarly maintained mean improvements. As part of the Biologics License Application (BLA) to FDA, Spark also submitted the results of two Phase 1 clinical trials, a natural history study and a MLMT validation study. Today’s advisory committee vote is non-binding, but FDA will take its recommendation into consideration when reviewing the BLA for Luxturna.

“There currently are no pharmacologic treatment options for people living with RPE65-mediated IRD, who in most cases progress to complete blindness,” said Principal Investigator Albert M. Maguire, M.D., professor of ophthalmology at the Scheie Eye Institute at the University of Pennsylvania’s Perelman School of Medicine and attending physician in the Division of Pediatric Ophthalmology at Children's Hospital of Philadelphia. “As a practicing physician who often speaks with patients and families living with IRDs, these conversations have been, up to now, frustrating in that there has been nothing to offer. Today’s advisory committee vote is an important step closer to the day that discussion can include potentially treating the blindness caused by their IRD.”

No serious adverse events (SAEs) associated with Luxturna or deleterious immune responses have been observed. Two ocular SAEs were reported in the clinical program, one in Phase 1 and one in Phase 3. The SAE in Phase 3 was related to the surgical procedure, and resulted in foveal thinning and a sustained reduction in visual acuity (VA) in one participant. The most common adverse reactions related to Luxturna reported in 10 percent or greater of the combined Phase 1 and Phase 3 trial participants included conjunctival hyperemia, cataract, increased intraocular pressure and retinal tear.

Luxturna is under Priority Review with FDA, with an assigned Prescription Drug User Fee Act (PDUFA) date of Jan. 12, 2018. Luxturna has received orphan drug, breakthrough therapy and rare pediatric disease designations from FDA. In August 2017, Spark Therapeutics’ Marketing Authorization Application (MAA) for Luxturna was validated by European Medicines Agency (EMA). Luxturna also has received orphan product designations from EMA.

Clinical Trial Overview of Luxturna (voretigene neparvovec)

The safety and efficacy of Luxturna were assessed in two open-label Phase 1 trials, which continue to follow participants who received Luxturna between 2007 and 2012, and one open-label, randomized, controlled Phase 3 trial. The Luxturna clinical program overall includes up to four years of efficacy data from a single dose. The overall safety profile has not changed over the period of observation, and has been previously reported (The Lancet 2016; The Lancet 2017).

Following the one-year control period of the Phase 3 study, all control participants elected to cross over and received Luxturna; long-term safety and efficacy continue to be assessed in the Phase 3 participants who received Luxturna between 2013 and 2015. The clinical trial program included 41 participants with vision loss ranging from mild to advanced, and included individuals from age four to 44 years at the time of first administration. Confirmed biallelic RPE65 mutations and the presence of sufficient viable retinal cells were established in all participants.

Luxturna Phase 3 clinical trial data, including data from the intent-to-treat population of all randomized participants through the one-year time point, were published in The Lancet. Results included in the BLA submission showed a statistically significant and clinically meaningful difference between intervention (n=21) and control participants (n=10) at one year, per the clinical trial’s primary endpoint, mean bilateral multi-luminance mobility testing (MLMT) score change (difference of 1.6; 95% CI, 0.72, 2.41; p=0.001). In addition, participants who received Luxturna showed a marked difference compared to control participants across the first two secondary endpoints: full-field light sensitivity threshold (FST) testing averaged over both eyes (p=0.001) and the mobility test score change for the first injected eye (p=0.001). A third secondary endpoint, the change in visual acuity (VA) averaged over both eyes, was not statistically significant between intervention and control participants (p=0.17).

On average, participants in the original Phase 3 intervention group maintained functional gains observed by the day-30 visit through their last annual follow-up visit, as measured by MLMT and FST, with observation ongoing. Average improvement in FST testing observed in the original intervention group at one year was more than 100-fold (or greater than two log units).

In continuation of the trial to include crossover of the control group to receive Luxturna, 93 percent (27 of 29) of all treated Phase 3 trial participants saw a gain of functional vision as assessed by bilateral MLMT over the follow-up period of at least one year from administration of Luxturna to each eye. Additionally, 72 percent (21 of 29) of all Phase 3 trial participants receiving Luxturna successfully completed MLMT at the lowest light level evaluated (1 lux) at one year.

Data from a cohort of the Phase 1 clinical trial, in which investigational Luxturna was administered to the contralateral, or second previously uninjected eye, showed mean improvements in functional vision and visual function. This cohort of participants (n=11) received the same dose of Luxturna that was administered in the Phase 3 trial and would have met the Phase 3 eligibility criteria. See the publication of the three-year Phase 1 data in The Lancet.

Two ocular SAEs were reported in the clinical program. There was one SAE related to the surgical procedure in one eye of a Phase 3 participant, in which there was foveal thinning and a sustained reduction in VA. One additional ocular SAE was reported in one eye of a Phase 1 participant in which the treatment for bacterial endophthalmitis led to elevated intraocular pressure and subsequent optic atrophy. There were three non-serious AEs of retinal deposits (subretinal precipitate) in three participants (three eyes) that were considered to be related to Luxturna. All three of these events were mild in intensity, transient in nature and resolved without consequences. No deleterious immune responses have been observed. The most common adverse reactions related to Luxturna reported in 10 percent or greater of the combined Phase 1 and Phase 3 trial participants included conjunctival hyperemia, cataract, increased intraocular pressure and retinal tear.

About RPE65-mediated Inherited Retinal Disease (IRD)

Inherited retinal diseases (also known as inherited retinal dystrophies) are a group of rare blinding conditions caused by one of more than 220 different genes. People living with IRD due to biallelic RPE65 gene mutations often experience night blindness (nyctalopia) due to decreased light sensitivity in childhood or early adulthood and involuntary back-and-forth eye movements (nystagmus). As the disease progresses, individuals may experience loss in their peripheral vision, developing tunnel vision, and eventually, they may lose their central vision as well, resulting in total blindness. Independent navigation becomes severely limited, and vision-dependent activities of daily living are impaired. There are currently no approved pharmacologic treatment options for IRD due to biallelic RPE65 gene mutations.

About Gene Therapy

Gene therapy is an investigational approach to treat or prevent genetic disease by seeking to augment, replace or suppress one or more mutated genes with functional copies. It addresses the root cause of an inherited disease by enabling the body to produce a protein or proteins necessary to restore health or to stop making a harmful protein or proteins, with the potential of bringing back function in the diseased cells and slowing disease progression. To deliver the functional gene into the cell, a vector is used to transport the desired gene and is delivered either intravenously (IV) or injected into specific tissue. The goal is to enable, through the one-time administration of gene therapy, a lasting therapeutic effect.

About Spark Therapeutics

At Spark Therapeutics, a fully integrated company committed to discovering, developing and delivering gene therapies, we challenge the inevitability of genetic diseases, including blindness, hemophilia and neurodegenerative diseases. We have successfully applied our technology directed to the retina and liver, and currently have four programs in clinical trials or under regulatory review, including the first potential gene therapy for a genetic disease in the United States and product candidates that have shown promising early results in patients with hemophilia. At Spark, we see the path to a world where no life is limited by genetic disease. For more information, visit www.sparktx.com, and follow us on Twitter and LinkedIn.

Cautionary note on forward-looking statements

This release contains "forward-looking statements" within the meaning of the Private Securities Litigation Reform Act of 1995, including statements regarding the company's product candidate LUXTURNA™ (voretigene neparvovec). Any forward-looking statements are based on management's current expectations of future events and are subject to a number of risks and uncertainties that could cause actual results to differ materially and adversely from those set forth in, or implied by, such forward-looking statements. These risks and uncertainties include, but are not limited to, the risk that: (i) our BLA or MAA submitted for LUXTURNA may not be approved by the FDA or EMA, respectively; (ii) the data from our Phase 3 clinical trial of LUXTURNA may not support U.S. labeling for all biallelic RPE65 mutations other than Leber congenital amaurosis (LCA) or retinitis pigmentosa (RP); (iii) the improvements in functional vision demonstrated by LUXTURNA in our clinical trials may not be sustained over extended periods of time; and (iv) any one or more of our product candidates in preclinical or clinical development will not successfully be developed and commercialized. For a discussion of other risks and uncertainties, and other important factors, any of which could cause our actual results to differ from those contained in the forward-looking statements, see the "Risk Factors" section, as well as discussions of potential risks, uncertainties and other important factors, in our Annual Report on Form 10-K, our Quarterly Reports on Form 10-Q and other filings we make with the Securities and Exchange Commission. All information in this press release is as of the date of the release, and Spark undertakes no duty to update this information unless required by law.

Source: Spark Therapeutics, Inc.

Posted: October 2017